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We prove the moments of the directed polymer partition function Z, using an 
exact position space renormalization group scheme on a hierarchical lattice. 
After sufficient iteration the characteristic function f (n )= In (Z ~ ) of the prob- 
ability ~(Z) converges to a stable limit f*(n). For small n the limiting behavior 
is independent of the initial distribution, while for large n, f*(n) is completely 
determined by it and is thus nonuniversal. There is a smooth crossover between 
the two regimes for small effective dimensions, and the nonlinear behavior of the 
small moments can be used to extract information on the universal scaling 
properties of the distribution. For large effective dimensions there is a sharp 
transition between the two regimes, and analytical continuation from integer 
moments to n ~ 0 is not possible. Replica arguments can account for most 
features of the observed results. 
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1. I N T R O D U C T I O N  

The directed polymer  (DP)  problem in a disordered env i ronment  (1~ has by 

now become a parad igm of the statistical mechanics of r andom systems. Its 
connect ion  to the Burgers '  equa t ion  (z) describing the dynamics  of surface 

growth in Eden clusters and  ballistic deposi t ion and  to the seemingly 
unrelated problem of conduc t ion  in the strongly localized regime (3'4) makes 
this model  extremely interesting. Briefly, in dimensions,  d +  1 ~< 3, any 

a m o u n t  of disorder is relevant, leading to nontr iv ia l  scaling with the length 

1 Coordinaci6n de Investigaci6n Bfisica, Intevep S.A., Caracas 1070A, Venezuela. 
2 Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 

02139. 

967 

822/71/5-6-9" 0022-4715/93/0600-0967507.00/0 �9 1993 Plenum Publishing Corporation 



968 Medina and Kardar 

L of the polymer. In particular, transverse fluctuations of the polymer are 
superdiffusive, 2 ~ L ~ with ~ > 1/2, while typical fluctuations in free energy 
scale as AF,.~ L~ The exponents ~ and co are related by the exponent iden- 
tity co = 2~ - 1. (5) A renormalization group (RG) treatment (z) indicates that 
for d + 1 > 3, a weak coupling phase at small disorder (6) is separated from 
a strong coupling phase at large disorder by a phase transition. The strong 
coupling exponents are known exactly only for d + 1 = 2, where ~ - 2/3 and 
co = 1/3. There have been many recent studies of the exponents of the DP 
in the strong coupling phase. (7'8) 

Perhaps the simplest analytic approach for getting the exact DP 
exponents in d +  1 = 2 is by a replica analysis of the moments of the 
partition function Z. (9) The replicated paths appearing in the average ( Z ' )  
can be regarded as the world-line of n attracting particles in one dimension, 
and is obtained from the ground-state energy of this system. As the n-particle 
bound-state energy scales as n(n 2 -  1), ( Z ' )  = ( Z ) n e x p [ - p n ( n  2 -  1)L]. 
But l n ( Z ' )  --=Zi (ni/i!) Ci(ln Z), where C~(ln Z) is the ith cumulant of 
F = In Z, where the expansion is valid for small n. Assuming that the result 
calculated for integer n can be continued to n ~ 0, the scaling of various 
cumulants is obtained from the replica result. The second cumulant must 
scale with a power less than one, while the third cumulant must scale as L. 
This is consistent with fluctuations scaling as AF..~L 1/3. Furthermore, it 
predicts that all higher-order cumulants of F must be absent. There have 
been a few recent studies of the full probability distribution ~(Z) .  Starting 
from the replica result, Zhang (1~ proposed an analytical form ~(F,  L) 
e x p ( - a  I F -  ( f ) L I  3/2/L1/2). While this form captures the correct scaling of 
free energy fluctuations, it is symmetric about the average value, precluding 
the finite third cumulant required by the replica argument. This deficiency 
was remedied by Crisanti et al. (m who generalize the above probability 
with different coefficients a_+ depending on the sign of F -  ( f ) L .  Recently 
Halpin-Healy (~2'13) probed the moments and sampled the probability 
distribution for the free energy fluctuations and the lateral wandering of 
the DP. His transfer matrix investigation reveals that the probability 
distribution of F is indeed asymmetric, with second and third cumulants 
scaling a s  L 2/3 and L, respectively. ~ Kim et aL (x4) subsequently measured a 
nonzero fourth cumulant scaling as L 4/3, seemingly contradicting the replica 
result. The presence of a finite fourth moment suggests that one has to be 
careful about the interchange of the limits n --* 0 and L ~ oe in the replica 
approach. The results of ground-state dominance are obtained by taking 
the L--* oe limit first, while in the identification of cumulants the n ~ 0 
limit must be performed first. The two limits, and all known results so far, 
can be brought into conformity by assuming l n ( Z  ~) = n ( F ) L  + g(nL~ 
For small arguments the scaling function has the form l i m x _ o = Z ~  a~x ~, 
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thus generating all cumulants with appropriate scaling. For large 
arguments, g(x )  oc x 3 in accordance with ground-state dominance. As we 
shall see later, there will be corrections to the large-n limit due to the 
nonuniversality of high moments. 

Hierarchical lattices provide a fertile testing ground for RG approaches, 
which can usually be performed exactly on such lattices. (15) Derrida 
and Griffiths (16) (DG) and Cook and Derrida (17) (CD) recently studied 
the DP problem on hierarchical lattices. They found a phase transition as 
a function of temperature in effective dimensions (2b = 2 d~ greater than 
two; a high-temperature phase, where the quenched and annealed averages 
coincide, and a low-temperature phase, where A F ~ U  ~ with co ~ 0.3, as 
expected for Euclidean latticesJ 1) In the strong-disorder regime, Roux 
et aL ~18~ studied more general microscopic distributions on these lattices. 
They obtained two basins of attraction depending on the tail of the 
probability distribution function (PDF) for local disorder. If the tail of the 
distribution decays to zero sufficiently rapidly (as for Gaussian disorder), 
the fixed PDF is indeed asymmetric, and supports a third cumulant. 
They also conjecture that the exact exponent co = 1/3 is reproduced for the 
hierarchical lattice with b = 2. However, this conjecture disagrees with the 
exact b = l + e  expansion of CD, (17) and is probably incorrect. (19) 
Nevertheless their results on the whole distribution may be qualitatively 
true for regular lattices, and other interesting properties of the distribution 
may be studied via hierarchical lattices. 

The purpose of this paper is to derive information about the moments  
of the partition function by the exact RG on hierarchical lattices, and see 
whether the information on integer moments can be used to construct the 
universal scaling properties of In Z. We build upon the previous work of 
CD, (17) who studied the recursion relations for the low moments of ~(Z). 
They found analytically that, for a Gaussian distribution of microscopic 
disorder, the n th moment undergoes a phase transition (for effective dimen- 
sions greater than two) at a temperature T(n). In the high-temperature 
phase the quenched and annealed averages coincide and ( Z " ) ~  ( Z )  n. 
We generalize the recursion relations to arbitrary n and iterate them on a 
computer. The advantage of this scheme, compared to following the recur- 
sion relation for ~(Z)  by Monte Carlo sampling of a histogram, is that it 
is tailored to provide direct information about the high moments and hence 
the tail of the distribution. (The Monte Carlo sampling would require an 
unreasonably large number of realizations. (12'13)) We follow the RG flow 
starting from the initial microscopic distribution of randomness, and obtain 
the final values of f * ( n ) - l n ( Z " ) / L .  We find two distinct regimes: For 
"small moments" f * ( n )  converges to a fixed distribution proportional 
to n, while the "high moments" retain the form assigned by the initial 
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(microscopic) distribution. For  b = 2 there is a smooth crossover between 
the two regimes, and it appears that the information on high moments can 
be continued to infer the scaling of fluctuations in In Z (determined from 
the n ~ 0 limit). For  b > 2 the transition appears to be quite sharp, and the 
behavior of high moments merely reflects the nonuniversal character of 
the tail of the distribution for N(Z). The rest of the paper is organized as 
follows: In Section 2 the exact moment recursion relations are obtained on 
a diamond hierarchical lattice, and the limiting behaviors of the moments 
are discussed for various microscopic distributions. The nonuniversal 
behavior of the high moments and the tail of the distribution N(Z)  is 
emphasized. We also provide Monte Carlo results for the same lattice and 
compute the exponent co. In Section 3 the nonuniversality of the high 
moments and the appropriate interpretation of the replica argument are 
justified by examining the properties of the bound state. We end by noting 
the consequences of these results for other problems, such as the conduction 
in the strongly localized regime. 

2. R E C U R S I O N  R E L A T I O N S  

Consider the family of hierarchical lattices (15) constructed iteratively at 
each generation, m + 1, by replacing every bond of the lattice at the pre- 
vious generation, m, by the motif of 2b bonds shown in Fig. la. The ratio 
of the number of bonds at successive generations can be used to define an 
effective dimension def f via 2b = 2 d~ We report results for lattices with b = 2 
and b = 3. The problem of directed polymers on these lattices reduces to 
determining the stable laws for combining random variables in a nonlinear 
fashion described below. The DP partition function is given by 

Z = ~ exp( - Er/T) (2.1) 
F 

where Er is the energy of the path [ ,  the summation is over all possible 
directed paths between the endpoints (see Fig. lb), and T is the temperature. 
The energy Er of each walk is obtained from 

Er = ~, eir (2.2) 
iF 

where eir are random numbers assigned to the bonds of the lattice from a 
predetermined probability distribution. The objective is to determine the 
asymptotic distribution function for Z as L = 27'-1--* 0% where L is the 
length of directed paths at generation m. o n e  can construct a recursion 
relation for the partition function in the following way: Let us take the case 
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a) 

m = 0  m = l  m = 2  

b) 

Fig. 1. (a) Recursive construction of a hierarchical lattice: Each bond at a given generation 
is converted to a motif of 2b bonds to generate the next generation. (b) The partition function 
Z of the directed polymer is obtained from the sum over all possible directed walks as 
illustrated. 

of  b = 2, where the zeroth generat ion is a single bond  whose energy is e. 
There is only one walk, and the part i t ion function is (see Fig. lb )  

Z 0 = exp( - e/T) (2.3) 

The first generat ion has four bonds  (2b in general), each with an independ- 
ent r a n d o m  variable ei. As there are two possible paths, the resulting 
part i t ion function is 

Z 1 = Zo(1)Z(2)  -~ - Zo(3)go  (4) (2.4) 

where the superscripts label the bonds, the subscripts the generat ion 
number.  This recursive relation in the general case (arbitrary b) is 

Z m  + _ _ 7 ( 1 ) ~ ( 2 )  (3) (4) (2b--1) (2b) (2.5) 1 - -  X'~m ~ m  + Z m  Z m  -Ju . . .  At- Z m Z m 

The quenched disorder enters at the lowest (microscopic) generation, 
m = 1. We shall focus on the evolution of the integer moments ,  

f P(e) Z~ de = u,,,(n) (2.6) 
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where the argument of u stands for the moment index, and the subscript 
indicates the generation number. The normalization of the probability 
distribution requires 

u,~(0) = 1 (2,7) 

The recursion relation for the nth moment is obtained as the sum over 
all possible ways to propagate n - s  paths on one branch a n d s  paths on 
the other (b = 2), i.e., 

urn+ l(n) = i n! s=o ( n - s ) !  s! [-Um(S) ]2 [Urn(n--s)]2 (2.8) 

It is easy to generalize the recursion relations in Eq. (2.8) to arbitrary b. 
The results for a uniform lattice (trivial path c o u n t i n g ) a r e  readily 
recovered starting from the condition ul(n) = 1 for all n. For  the case of an 
arbitrary initial distribution we set 

f P(e) Z~ de = ul(n) = exp [ f l (n ) ]  (2.9) 

where fo(n) = an + fin 2 + 7n 3 + ...  is the characteristic function of the 
microscopic distribution written as an arbitrary polynomial in n. We expect 
that under iteration by the above recursion relations the initial distribution 
converges to a fixed function f * (n )  with the moments given by 

urn(n) = 2 (L 1), exp[Lf*(n)]  (2.10) 

[-The first factor on the right-hand side of Eq. (2.10) is just the number of 
paths at the mth genera t ion . ]  

The numerical results are qualitatively different for the cases b > 2 and 
b <~ 2. The result for b = 3 and different initial distributions of randomness 
are given in Fig. 2. [-The vertical axis is scaled by L = 2 m- 1 in order to 
isolate f* (n ) . ]  Starting with f ( n ) =  rin k, we first see a linear behavior in n 
which then crosses over to a dependence identical to the one used for the 
microscopic distribution. The case k = 2 corresponds to a Gaussian dis- 
tribution, where r is related to the variance of the microscopic probability 
distribution (disorder strength a 2) by r = o-Z/2T2. Figure 3 indicates that 
the point of crossover between the two regimes depends on r. In fact the 
transition between the two behaviors is very sharp. The various moments 
have different critical temperatures: on decreasing T, the higher moments 
slip into the nonuniversal low-temperature behavior before the lower 
moments (which stay in the linear regime). To the precision of one part in 
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Fig. 2. 

E 

_= 

1000 

500 

100 

50 

10 

5 

b = 3  

f(n) = n( In 3 + 13 ) 

I I 

5 10 

m o m e n t s  n 

f(n) = 0.00I n 4 

f(n) = 0 . 0 1  n 3 

f(n) = 0 . 1  n 2 

Fixed values of log moments for b = 3, starting with initial distributions, f t (n )  = 0.1n 2 
(circles),  0.01/73 (triangles), and 0.001n 4 (diamonds). 

500.0 

100.0 

50 .0  
,=~ 

E 

_,- lO.O 

5.0 

1.0 

0.5 

b = 3  + . f  0.5 

initial: fo(n)= 13 n 2 .+++~+~ 03 
. ++ ~ y  0.2 

f n =  2 +++++ ( )  13n ++ ++,++~ o l 

Z §247 / o o, 
+ ++ +~ .++~ ~ d - + +  +++ 

+ + ++ ++ A~.~- 0.01 
+ + + 4.+ 

+ + ++ ++ 
. * + ,$ ,  13 

++ * *  
+ + ~= ~,k 

* ~ ~ f ( n ) = n ( I n 3 + 1 3 )  

I 1 I 

5 10 50 

moments n 

Fig. 3. Same as Fig. 2, but starting with fl(n)= fin 2. Note the sharp change between the 
linear and the quadratic behaviors. 
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1012 achieved in our simulations, the results for all  initial distributions can 
be summarized by the remarkably simple formula 

lim lnu, ,(n)  ~ ( lnb+/~)n  for ( ln2+/~) / /3<n  (2.11) 
m ~ ~ L • f l ( n )  otherwise 

The results for b = 2 and k = 2, depicted in Fig. 4, are qualitatively dif- 
ferent in that the sharp transition between the two regimes is replaced by 
a smooth crossover. To understand this crossover, we subtracted the linear 
term of (In b + f l )n,  corresponding to the annealed free energy. The results, 
depicted in Fig. 5a, show a leftover nonlinear dependence on n. The figure 
focuses on the dependence as n decreases for three values of temperature. 
Figure 5b shows the limiting slopes (at small n) of the data in Fig. 5a 
and also includes some lower temperatures. It is interesting to note an 
effective power law dependence of n ~ with ~ = 2.83 _ 0.02, close to the n 3 
dependence expected for the continuum limit. This is a lower power than 
expected from the results of DG, (16) where 1/6~0.3. As the recursion 
relations are only valid for integer n, one cannot be absolutely certain 
that the power laws continue to the important n--* 0 limit. However, the 
simplest scenario (see Section 3) is that they indeed do so, but that various 
corrections to scaling make the effective exponents computed at integer 
n less reliable. This difficulty was also encountered in the variational 
approach of Blum et  aL (2~ to the problem of a complex DP. (4'1~ 
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5 0  

Fig. 4. Same as Fig. 3, but for b = 2. 
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One additional interesting feature of the numerical results summarized 
by Eq. (2.11) is the prediction that the position of the transition for the 
moments is given by the condition 

In 2+/~ 
=n  (2.12) 

It follows that for Gaussian disorder with /~ = 1/2T 2 and n = 2, one has 
T~=(21n2) -1/2, the lower bound proposed by Cook and Derrida. ~lv) 
This lower bound corresponds to the temperature at which the entropy 
computed from the annealed free energy turns negative. This coincidence is 
certainly worth pursuing, and has been the subject of a recent study by 
Evans and Derrida/2~) 

Monte Carlo studies where also carried out on a b = 2 hierarchical 
lattice for the case of a Gaussian microscopic distribution of the energies. 
We carried out more than 100,000 samplings of lattices of generation 
m = 9. While the behavior of the low moments was readily verified, the 
higher moments were difficult to access due to the difficulties of sampling 
the tail of the distribution. In this respect the exact RG procedure has the 
important advantage of preserving the tails exactly. The Monte Carlo data 
confirm the expected linear dependence for the free energy (In Z ) =  
(0.13+0.01)L, and the scaling of fluctuations ( ( l n Z ) Z ) - ( ( l n Z ) )  2 
as L 2~. The measured o9 = 0.29 + 0.01 is lower than the known result for 
Euclidean lattices, and disagrees with the conjecture of Roux et al/~8) that 
o9 = 1/3 for this lattice. This also points to a higher value 6 calculated 
above from the limited knowledge of integer moments. The sampled 
distribution also served to check the linear and nonuniversal regimes of 
l n ( Z  n) derived by the exact renormalization scheme (only in the small 
portion allowed by sampling). 

3. R E P L I C A  A N A L Y S I S  

To gain some understanding of these results, we make a comparison 
to the replica calculations of moments in a (d+ 1)-dimensional Euclidean 
space. The replicated walks in (Zn)  can be regarded as world-lines of n 
bosons in d dimensions. In a continuum approximation the bosons are 
subject to a Hamiltonian (9) 

0.2 n (~2 
Z  d(xo-x ) (3.1) 

The n dependence of the ground-state energy can be estimated by the 
following argument. ~1~ Consider a variational wave function describing a 
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Fig. 5. (a) Behavior of low moments  for b = 2, after subtracting (ln 2 + fl)n. The remainder 
shows a nonlinear behavior for small n, Nontrivial higher powers of n are observed in the limit 
n--* O. (It is not possible to include n = 1 because its value is exactly ]n 2 +/~ to machine 
precision). (b )The  exponent for the nonlinear behavior is observed in the limit n--* 0. The 
value 6 = 2.83 is close to the continuum result of 5 = 3. 
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bound state confined to a size R. Estimating the kinetic and potential 
energy terms in Eq. (3.1) gives 

d7 n ~r2n(n- 1) 
8, ..~ R2 Rd (3.2) 

Minimizing this expression with respect to R gives different behavior, 
depending on d. For  d < 2  there is a minimum at R2-Uoc l * / ( n - l ) ,  with 
e, oc ~n[(n-1)/ l*]  2/r and l*oc  ~/a 2. As ~r2--+0, the size R diverges, 
and thus the use of the continuum approximation is internally self-consis- 
tent. However, as n increases, the particles become more tightly bound, and 
eventually the continuum approximation breaks down when R approaches 
the lattice spacing. In this limit the n replicas follow the same trajectory 
and hence feel the corresponding moment  of the local distribution chosen 
for the bonds [i.e., --~n = f l ( n ) ] .  This clearly leads to a nonuniversality of 
the high moments  that does not go away as the size L is increased. (22) This 
nonuniversality is also present on the hierarchical lattice, and accounts 
for the crossover point nc in Fig. 4. For  d =  2 the crossover occurs for 
nc oc l/or 2. This is approximately the behavior observed for b = 2 on the 
hierarchical lattice, as shown in Fig. 6. Since n c can be made arbitrarily 
large, we can get valuable information about the universal (n ~ 0) part  of 
the distribution by studying finite integer moments  as in Fig. 5. 

+ 
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0.06 + nco~ l / o  2 

~) 0,07 

0.06 

0.05 

0 . 0 4  

0.03 ~-I J _ _ l  t J r I 

4 5 6 7 8 9 10 20 

nr 

Fig. 6. Scaling of the crossover point n c between linear and quadratic behaviors from data 
similar to Fig. 4. The fit is to the straight line predicted for a (d= 1 + 1)-dimensional 
Euclidean lattice. 
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For d >  2, Eq. (3.2) has two minima at R ~ ~ and R ~ 0. The former 
corresponds to unbound particles and the latter to a collapse of all par- 
ticles to a single point. The collapse is of course modified by lattice effects, 
and the continuum approximation is no longer valid. In fact, if all paths 
follow the same trajectory, f*(n)=f~(n) in Eq. (2.10). The minimum at 
R = 0 now has a finite energy which can be compared to the zero energy 
of the unbound state. The crossing of these two levels leads to a discon- 
tinuous phase transition, controlled by the nonuniversal details of the 
microscopic randomness described by fa(n). The unbound phase has an 
energy that increases linearly with n as in Eq. (2.11). This is the "free" 
phase of the DP in which the annealed and quenched averages are identi- 
cal. It is interesting that the numerical results in Eq. (2.11) also suggest that 
in the bound state the paths are fully collapsed. The behavior of the 
moments is nonuniversal i n  this state, merely reflecting properties of the 
microscopic randomness distribution. There is also a phase transition in 
the probability distribution for In Z in b > 2. For sufficiently large disorder 
the distribution becomes broad and exhibits universal scaling properties, 
which have been numerically investigated. (~2~ Clearly the knowledge of the 
moments in Eq. (2.11) does not provide any insight into the scaling of In Z 
in this case. Another interesting consequence is that the bulk and tail of the 
distribution can renormalize independently. For small fl, while the bulk 
evolves toward a delta function, the tails will be governed by the micro- 
scopic distribution. 

There have been several replica treatments of real (23) and complex 
variants (1~ of the DP problem. The above results indicate that the 
analytical continuation from integer n to n ~ 0 must be taken with great 
care. It is justified only if this limit can be taken without encountering any 
singularities. This difficulty could account for the disagreements between 
the results of refs. 10 and 8 and various numerical work. (24) An illuminating 
application of this method is given in recent variational and lid treatments 
of the problem in ref. 8. Different analytical forms are identified for n > 1 
and n < 1. The forms for n < 1 exhibit a universal nonlinear behavior that 
provides the scaling of In Z. 

An interesting variation of the DP occurs for strongly localized 
electrons. The overlap integral between two impurities is obtained by a 
Feynman sum over all directed paths connecting the impurities. (4'=) This 
overlap integral is essentially the conductance associated with the hop. 
The only difference between this model and the regular DP is that bond 
randomness can take both positive and negative values. Transfer matrix 
studies (=1 indicate that this model is in the same universality class as the 
regular DP (for a different point of view see ref. 10). One can thus expect 
the behavior of the probability distribution for the conductance of an 
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insulator to show some of the features discussed above for the partition 
sum of the DP. Altshuler et  al. (25) (AKL) have computed the moments of 
the conductance using an extended nonlinear a model. In the metallic 
regime they find a probability distribution that is close to a Gaussian 
except for long log-normal tails. At the metal-insulator transition in 2 + e 
dimensions sufficiently large moments diverge in L, indicating nonuniversal 
behavior in the tail of the distribution, reminiscent of our results. Shapiro ~26~ 
has pointed out that the divergence of these moments is not inconsistent 
with universality, and proposes a distribution that reproduces the moments 
of AKL. The key point is that, for distributions with power-law tails, large 
enough moments are divergent. (Conversely, if the nth moment increases 
faster than n!, the probability distribution cannot be uniquely inferred. (27~) 
Shapiro suggests that the nonuniversality of the moments found by AKL 
only reflects that these are "bad" scaling variables, and cannot be used to 
confirm or reject scaling. Another possibly related result is by Schreiber 
and Grussbach, (28) who find multifractal behavior at the metal-insulator 
transition in three dimensions. As a result the moments of conductance are 
rather similar to those we found above. Further work is in progress to 
make the connections between these systems more transparent. 
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